$\prod\limits_{i=1}^{n} \mathbb{Z}_{2^i}$-Additive Cyclic Codes
نویسندگان
چکیده
In this paper we study n ∏ i=1 Z2i -Additive Cyclic Codes. These codes are identified as Z2n [x]submodules of n ∏ i=1 Z2i [x]/〈x αi − 1〉; αi and i being relatively prime for each i = 1, 2, . . . , n. We first define a n ∏ i=1 Z2i -additive cyclic code of a certain length. We then define the distance between two codewords and the minimum distance of such a code. Moreover we relate these to binary codes using the generalized Gray maps. We define the duals of such codes and show that the dual of a n ∏ i=1 Z2i -additive cyclic code is also cyclic. We then give the polynomial definition of a n ∏ i=1 Z2i additive cyclic code of a certain length. We then determine the structure of such codes and derive a minimal spanning set for that. We also determine the total number of codewords in this code. We finally give an illustrative example of a n ∏ i=1 Z2i -additive cyclic code. Index Terms Additive code, Cyclic code, Dual Code, Ideal, Generator, Polynomial, Spanning set
منابع مشابه
Computing the generator polynomials of $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes
A Z2Z4-additive code C ⊆ Z α 2 × Z β 4 is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z2 and the set of Z4 coordinates, such that any simultaneous cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z4[x]-module Z2[x]/(x − 1)×Z4[x]/(x −1). Any Z2Z4-additive cyclic code C is of t...
متن کامل$(1+2u)$-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$
Let $R=\mathbb{Z}_4+u\mathbb{Z}_4,$ where $\mathbb{Z}_4$ denotes the ring of integers modulo $4$ and $u^2=0$. In the present paper, we introduce a new Gray map from $R^n$ to $\mathbb{Z}_{4}^{2n}.$ We study $(1+2u)$-constacyclic codes over $R$ of odd lengths with the help of cyclic codes over $R$. It is proved that the Gray image of $(1+2u)$-constacyclic codes of length $n$ over $R$ are cyclic c...
متن کامل$\mathbb{Z}_p\mathbb{Z}_p[u]$-additive codes
Abstract: In this paper, we study ZpZp[u]-additive codes, where p is prime and u 2 = 0. In particular, we determine a Gray map from ZpZp[u] to Z α+2β p and study generator and parity check matrices for these codes. We prove that a Gray map Φ is a distance preserving map from (ZpZp[u],Gray distance) to (Z α+2β p ,Hamming distance), it is a weight preserving map as well. Furthermore we study the ...
متن کاملOn $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-$(1+u)$-additive constacyclic
In this paper, we study Z2Z2[u]-(1 + u)-additive constacyclic code of arbitrary length. Firstly, we study the algebraic structure of this family of codes and a set of generator polynomials for this family as a (Z2+uZ2)[x]-submodule of the ring Rα,β. Secondly, we give the minimal generating sets of this family codes, and we determine the relationship of generators between the Z2Z2[u]-(1 + u)-add...
متن کاملSome results of linear codes over the ring $\mathbb{Z}_4+u\mathbb{Z}_4+v\mathbb{Z}_4+uv\mathbb{Z}_4$
Abstract: In this paper, we mainly study the theory of linear codes over the ring R = Z4 + uZ4 + vZ4 + uvZ4. By the Chinese Remainder Theorem, we have R is isomorphic to the direct sum of four rings Z4. We define a Gray map Φ from R n to Z 4 , which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over Z4. Furthermore, we study the MacWilliams identities of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.06913 شماره
صفحات -
تاریخ انتشار 2017